Menoufia University
Faculty of Engineering, Shebin El-Kom, Basic Engineering science Department
First Semester Examination, 2016-2017
Date of Exam: 12/1/2017

Subject: Operations research
Code : BES 603
Year : postgraduate students
Time Allowed : 3 hours
Total Marks: 100 marks

Answer the following questions

Question 1)

a) Define each of the following expressions:

Algorithm- Method- Technique- Heuristic- Metaheuristic.
b) State the differences between the traditional algorithms and metaheuristic algorithms.
c) Explain the Basics of Game theory.
d) What are the necessary and sufficient conditions for the multi-variable optimization problem without constraints?
e) Determine the minimum value of the function

$$
f(x)=x_{1}^{2}+x_{2}^{2}-2 x_{1}-4 x_{2}
$$

Subject to:

$$
\begin{aligned}
& g_{1}(x)=x_{1}+4 x_{2} \leq 5 \\
& g_{2}(x)=2 x_{1}+3 x_{2} \leq 6 \\
& x_{1}, x_{1} \geq 0
\end{aligned}
$$

Start from the point $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
f) Find the minimum value for the function $f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}+x_{1}-x_{2}$ using the Steepest Descent (Cauchy) Method, start from the point $(0,0)$.
g) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit radius.
h) Determine the maximum and minimum values of the function

$$
f(x)=12 x^{5}-45 x^{4}+40 x^{3}+5
$$

i) How do you test the positive, negative, or indefiniteness of a square matrix [A]? Then what is the type of the following matrix?

$$
A=\left[\begin{array}{ccc}
4 & -3 & 0 \\
-3 & 0 & 4 \\
0 & 4 & 2
\end{array}\right]
$$

(Question 2)

a) The following Figure shows two frictionless rigid bodies (carts) A and B connected by three linear elastic springs having spring constants k_{1}, k_{2}, and \mathbf{k}_{3}. The springs are at their natural positions when the applied force P is zero. Find the displacements x_{1} and x_{2} under the force P by using the principle of minimum potential energy.

b) Find the function $x(t)$ that minimizes the following cost functional $J=\int_{-1}^{1} \boldsymbol{x}(t) d \boldsymbol{t}$ Subject to: $\int_{-1}^{1}\left[1+\dot{x}^{2}(t)\right]^{\frac{1}{2}} d t=1$
c) Solve the following multiple criteria decision problem by the weighted method, assume that the decision maker gives the weights, $w_{1}=0.6$ and $w_{2}=0.4$ to indicate the importance of each objective
$\operatorname{Max} f_{1}=0.4 x_{1}+0.3 x_{2}$
$\operatorname{Max} f_{2}=x_{1}$
subject to:

$$
\begin{aligned}
& x_{1}+x_{2} \leq 400 \\
& 2 x_{1}+x_{2} \leq 500 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

d) Solve the following problem by using ϵ-constraint method
$\operatorname{Min} f_{1}=x^{4}$
Min $f_{2}=(x-2)^{4}$
subject to:

$$
-4 \leq x \leq 4
$$

